Rabu, 26 Oktober 2016

Menghitung T(n) min, max, dan average

 Contoh algo1 :


Procedure RataMaxMin ()


Deklarasi

  data, max, min : integer

  rata : real


Algoritma

tot = 0

i = 1

input (n)

while i ≤ n do

    input data

if i = 1 then

      min ← max ← data

else

   if max < data then

          max  ← data

   else

      if min > data then

               min ← data

      endif

   endif

endif

tot ← tot + data

i ← i + 1

endwhile

rata ← tot / n

output (rata)

output (min)

output (max)




Mencari T(n) :

T(n) Min(n) : 5

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =5

             T(n) ≤ Og(n)

             5 ≤  n (untuk semua n ≥ 5)

             C = 1 n0=5


Big Ω : T(n) =5

             T(n) ≥ Ωg(n)

             5 ≥ n (untuk semua n ≤ 5)

             C = 1 n0=5


Big Θ : C1g(n) =5

             C2g(n) =5

             C2g(n) ≤ t(n) ≤ C1g(n)

             4 ≤ 5 ≤ 6

             C1 = 4, C2 = 6, n0= 0


T(n) Max(n) : 3(n-1)+5

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) = 3(n-1)+5

             T(n) ≤ Og(n)

             3(n-1)+5 ≤  n (untuk semua n ≥ -1)

             C = 1 n0= -1


Big Ω : T(n) = 3(n-1)+5

             T(n) ≥ Ωg(n)

             3(n-1)+5 ≥ n (untuk semua n ≤ 1)

             C = 1 n0= 1


Big Θ : C1g(n) = 3(n-1)+5

             C2g(n) = 3(n-1)+5

             C2g(n) ≤ t(n) ≤ C1g(n)

             -2 ≤ 3(n-1)+5 ≤ 0

             C1 = -2, C2 = 0, n0= 0


T(n) Avrg(n) : (3(1/2  n(n+1))+4)/n

Tentukan Big O , Big Ω , Big Θ


Big O : T(n) = (3(1/2  n(n+1))+4)/n

             T(n) ≤ Og(n)

             (3(1/2  n(n+1))+4)/n ≤  n (untuk semua n =0)

             C = 1 n0=0

Big Ω : T(n) = (3(1/2  n(n+1))+4)/n

             T(n) ≥ Ωg(n)

             (3(1/2  n(n+1))+4)/n ≥ n (untuk semua n ≤ 1)

             C = 1 n0= 1

Big Θ : C1g(n) = (3(1/2  n(n+1))+4)/n

             C2g(n) = (3(1/2  n(n+1))+4)/n

             C2g(n) ≤ t(n) ≤ C1g(n)

             0 ≤ (3(1/2  n(n+1))+4)/n ≤1

             C1 = 0, C2 = 1, n0= 0

(3(1/(2 ) n(n+1))+4)/n


Contoh Algo2 :


Deklarasi

P , l , i , luas , keliling : integer


Algoritma

p ß5

l ß10

i ß n

if    i > 10 then

                Write (“ Menghitung Luas “)

                Luas = p * l

Else i <= 10 then

                Write (“ Menghitung Keliling “)

                Keliling = 2*p + 2*l

Else if

Else if


Mencari T(n) :

T(n) Min(n) : 6

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =6

             T(n) ≤ Og(n)

             6 ≤  n (untuk semua n ≥ 6)

             C = 1 n0=6


Big Ω : T(n) =6

             T(n) ≥ Ωg(n)

             6 ≥ n (untuk semua n ≤ 6)

             C = 1 n0=6


Big Θ : C1g(n) =6

             C2g(n) =6

             C2g(n) ≤ t(n) ≤ C1g(n)

             5 ≤ 6 ≤7

             C1 = 5, C2 = 7, n0= 0

T(n) Max(n) : 8

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =8

             T(n) ≤ Og(n)

             8 ≤  n (untuk semua n ≥ 8)

             C = 1 n0=8


Big Ω : T(n) =8

             T(n) ≥ Ωg(n)

             8 ≥ n (untuk semua n ≤ 8)

             C = 1 n0=8


Big Θ : C1g(n) =8

             C2g(n) =8

             C2g(n) ≤ t(n) ≤ C1g(n)

             7 ≤ 8 ≤9

             C1 = 7, C2 = 9, n0= 0

T(n) Avrg(n) : 6+8 / 2 = 7

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =7

             T(n) ≤ Og(n)

             7 ≤  n (untuk semua n ≥ 7)

             C = 1 n0= 0


Big Ω : T(n) =7

             T(n) ≥ Ωg(n)

             7 ≥ n (untuk semua n ≤ 7)

             C = 1 n0=7


Big Θ : C1g(n) =7

             C2g(n) =7

             C2g(n) ≤ t(n) ≤ C1g(n)

             6 ≤ 7 ≤8

             C1 = 6, C2 = 8, n0= 0


Contoh Algo3 :


Program appraisal _hadir


Deklarasi

absen: integer

hari:    integer

masuk: single

status : char


Algoritma

Hari <= 100 {jumlah hari kerja = 100}

masuk <= 75 {kehadiran = 75 dalam hari}

absen <= (masuk /hari) * 100

If (absen > 80) OR (absen = 80) then

    Status <= 'A'

Else if (absen < 80) then

       Status <='C'

End if


Write(status)



Mencari T(n) :

T(n) Min(n) : 4

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =4

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 4)

             C = 1 n0=4


Big Ω : T(n) =4

             T(n) ≥ Ωg(n)

             4 ≥ n (untuk semua n ≤ 4)

             C = 1 n0=4


Big Θ : C1g(n) =4

             C2g(n) =4

             C2g(n) ≤ t(n) ≤ C1g(n)

             3 ≤ 4 ≤5

             C1 = 3, C2 = 5, n0= 0

T(n) Max(n) : 4


Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =4

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 4)

             C = 1 n0=4


Big Ω : T(n) =4

             T(n) ≥ Ωg(n)

             4 ≥ n (untuk semua n ≤ 4)

             C = 1 n0=4


Big Θ : C1g(n) =4

             C2g(n) =4

             C2g(n) ≤ t(n) ≤ C1g(n)

             3 ≤ 4 ≤5

             C1 = 3, C2 = 5, n0= 0

T(n) Avrg(n) : 4

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =4

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 4)

             C = 1 n0=4


Big Ω : T(n) =4

             T(n) ≥ Ωg(n)

             4 ≥ n (untuk semua n ≤ 4)

             C = 1 n0=4


Big Θ : C1g(n) =4

             C2g(n) =4

             C2g(n) ≤ t(n) ≤ C1g(n)

             3 ≤ 4 ≤5

             C1 = 3, C2 = 5, n0= 0

Contoh Algo4 :



Program cari_bil_terkecil_dibanding_5


Deklarasi

    X    :  integer

    Y    :  integer

    Z    :  integer

   Bil   :  integer


Algoritma

Read (x)     

Read (y)     

Read (z)     

Bil    5

If x < bil then

       Write (‘Bilangan terkecil adalah ‘,x)

Else if   y <  bil then

       Write (‘Bilangan terkecil adalah ‘,y)

Else if   z  <  bil then

       Write (‘Bilangan terkecil adalah ‘,z)

Else

Write (‘Tidak ada bilangan yang lebih kecil dari 5’ )

End if



Mencari T(n) :

T(n) Min(n) :1

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =1

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 1)

             C = 1 n0=1


Big Ω : T(n) =1

             T(n) ≥ Ωg(n)

             1 ≥ n (untuk semua n ≤ 1)

             C = 1 n0=1


Big Θ : C1g(n) =1

             C2g(n) =1

             C2g(n) ≤ t(n) ≤ C1g(n)

             0 ≤ 1 ≤2

             C1 = 0, C2 = , n0= 0

T(n) Max(n) :1

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =1

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 1)

             C = 1 n0=1


Big Ω : T(n) =1

             T(n) ≥ Ωg(n)

             1 ≥ n (untuk semua n ≤ 1)

             C = 1 n0=1


Big Θ : C1g(n) =1

             C2g(n) =1

             C2g(n) ≤ t(n) ≤ C1g(n)

             0 ≤ 1 ≤2

             C1 = 0, C2 = , n0= 0

T(n) Avrg(n) :1

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =1

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 1)

             C = 1 n0=1


Big Ω : T(n) =1

             T(n) ≥ Ωg(n)

             1 ≥ n (untuk semua n ≤ 1)

             C = 1 n0=1


Big Θ : C1g(n) =1

             C2g(n) =1

             C2g(n) ≤ t(n) ≤ C1g(n)

             0 ≤ 1 ≤2

             C1 = 0, C2 = , n0= 0

Contoh Algo5 :

Procedure menentukan _indeks_nilai(input:nilai, output:indeks)

Kamus :

indeks = char

Algoritma :

input nilai

                if (nilai >= 80)then

                                indeks = 'A'

                else

                                if (nilai >= 70 and nilai < 80)then

                                                indeks = 'B'

                                else

                                                if (nilai >= 60 and nilai < 70)then

                                                                indeks = 'C'

                                                else

                                                                if (nilai >= 50 and nilai < 60)then

                                                                                indeks = 'D'

                                                                else

                                                                                indeks = 'E'

                                                                endif

                                                endif

                                endif

                endif

                output("indeks nilai anda =  ", indeks)

             

EndAlgoritma



Mencari T(n) :

T(n) Min(n) :1

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =1

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 1)

             C = 1 n0=1


Big Ω : T(n) =1

             T(n) ≥ Ωg(n)

             1 ≥ n (untuk semua n ≤ 1)

             C = 1 n0=1


Big Θ : C1g(n) =1

             C2g(n) =1

             C2g(n) ≤ t(n) ≤ C1g(n)

             0 ≤ 1 ≤2

             C1 = 0, C2 = , n0= 0

T(n) Max(n) :1

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =1

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 1)

             C = 1 n0=1


Big Ω : T(n) =1

             T(n) ≥ Ωg(n)

             1 ≥ n (untuk semua n ≤ 1)

             C = 1 n0=1


Big Θ : C1g(n) =1

             C2g(n) =1

             C2g(n) ≤ t(n) ≤ C1g(n)

             0 ≤ 1 ≤2

             C1 = 0, C2 = , n0= 0

T(n) Avrg(n) :1

Tentukan Big O , Big Ω , Big Θ

Big O : T(n) =1

             T(n) ≤ Og(n)

             4 ≤  n (untuk semua n ≥ 1)

             C = 1 n0=1


Big Ω : T(n) =1

             T(n) ≥ Ωg(n)

             1 ≥ n (untuk semua n ≤ 1)

             C = 1 n0=1


Big Θ : C1g(n) =1

             C2g(n) =1

             C2g(n) ≤ t(n) ≤ C1g(n)

             0 ≤ 1 ≤2

             C1 = 0, C2 = , n0=0

Tidak ada komentar:

Posting Komentar